CANTO I.

Translation.

1. In this earth there once was a great city of the name of Ayodhyá; a city that surpassed all other cities in respect of wealth and prosperity. So prosperous (was it, that it looked) as if it lad fallen down from heaven by the weight of its great wealth. It was a city which was a great resort of the Kshattriya race, as the S'amí tree is the constant abode of fire.
2. The moon became radiant by the reflected refulgence of the rubies that decked the spires of the lofty edifices of that city. Nay, her (tho moon's) countenance became florid through jealous wrath at the sight of the superior charms of the fair females that lived there.
3. The opulence and prosperity of that city brought joy to all, except to young maidens that sought their lovers. For the lustre that issued from the gems of the golden gates of that city dissipated darkness and made night bright as day.
4. The glowing flags of China satin, which streamed in the sky from the lofty steeples of the mansions of that city, seemed like projections chiselled out from the moon.
5. The swans that were swimming in the moat surrounding the city-wall cast wistful looks towards tho lakes of the city; but out of despair, owing to the lofty walls which stood in their way, they were reminded of the exploits of Paraśu-ráma, who by his arrow cut a passago through the Mount of Krauñcha.

A brief account of Bháskara, and of the works written, and discoveries made, by him. - Br the late Panp̣it Bápu Deva S'́́strí, C.I.E.

[Note by Editor. - The following paper was found amongst the papers of the deceased Pandit after his death in 1890 and communicated to the Society, of which ho was an Honorary Momber, by his relations. It forms a portion of tho preface to his revised edition of Mr. Wilkinson's translation of the Gold́dhyáya of the Siddhánta Siromani, published in the "Bibliotheca Indica," so far back as 1861. This preface was, apparently by an accident, not printed at the time, and tho Pandit kept it by him, and spent considerable pains over numerous and careful corrections, which he subsequently added. There seems to be no doubt that he intended to publish it on somo future occasion, and there cannot be a better place for its appearance than the Journal of the Socioty of which he was so long a valued membor.]

Bháskara was born in 1036 of the Sáliváhana era-or in the year 1114, A. D.-Some authors mention that he was an inlabitant of Bira, a Maráthá villago; but he himself states, at the end of his Goládhyáya, that his native place was near the Salyyidri, or tho Western Gháts,
and it appears to me that he was an inhabitant of Víjapura, the ancient metropolis of the Karnatik. Some say that he was a Maráthá Bráhman follower of the Yajurveda; but bis method of annotating, which is still current in the Karnatik in annotating poetical works, shews that he was a Kanará Bráhman of Tíjapura. His father, named Maheśvara, was a very great Pauḍit and Astronomer, and a virtuous man. He had acquired the title of A'chárya (Doctor) in the assembly of the Panḍits.

Bláskara studied all the scienees aequired by him with his father. It cannot be ascertained whether he or his father was patronized by any Rájá, or whether be was a rich or poor man. But it is certainly truo that he was expert in seienee, a very great poet, and an exeellent Astronomer.

In bis time, Lalla's work on astronomy, called S'ishya-dhivriddhidaTantra, more usually styled the Dhivriddhida simply, was mueli used, as the Siddhánta-Siromani is at present. Bháskara first made a eommentary on Lalla's work, and then wrote his own work on astronomy, called Siddhánta-S゙iromani, in two parts, Ganitádhyáya and Goládhyáya, compos. ing before it two introductory works: the first on Arithmetic, called Páti, or Lìlávatí, and the second on Algebra.* He eompiled his excellent work Siddhanta-Siromani in the 36th year of his age, or 1150, A. D. Its first part, Gaṇitádhyáya, is divided into 12 ehapters, viz. :-

Chapter I. Called the Madhyagati, which treats of tho rules for finding the mean plaees of the planets, contains 7 seetions.

Section 1. Kinds of time.
Section 2. Revolutions of the planets, \&e.
Seetion 3. Rules for finding the ahargana (or cnumeration of mean terrestrial days elapsed from the commeneement of the Kalpa) and thenee the mean places of the planets, \&c.

Section 4. The dimensions of the Brahmanda (universe), and of the orbits of the planets, and thence the rules for finding the mean plaees of the planets.

Section 5. This seetion, ealled Pratyabda-S'uddhi (the remainders of additive months at the beginning of each year), treats of rules for finding the remainders of additive mouths, subtractive days, \&e., at the beginning of each year, the small ahargana (or enumeration of tho days elapsed from the beginning of the curvent year) and thenee the mean plaees of the planets.

Seetion 6. Determination of additive months and others.
Seetion 7. The Deśántara eorrection, \&e., and conclusion of the first chapter.

[^0]Chapter II. Called the Spashta-gati, which treats of the rulcs for finding the apparent places of the planets.

Chapter III. Called the Tripraśna, treats of the rules for resolving questious on time, finding the positions of places and directions.

Chapter IV. Called Parva-samblava, on the possibility of the eclipses of the sun and moon.

Chapter V. Of lunar eclipses.
Chapter VI. Of solar eclipses.
Chapter VII. Rulcs for findiug the lengths of the shadows reflceted from the plaucts.

Chapter VIII. On tho risiag and setting of the planets.
Chapter IX. On the phases of the moon and the position of the moon's cusps.

Chapter X. On the conjunction of the planets.
Chapter XI. On the conjunction of the planots with stars.
Chapter XII. Rules for finding the time at which the declinations of the sun and moon become equal.

The secoud part of the Siddhanta-S'iromani, called Coláchyáya is divided into 13 ehapters, with an appendix. Of this part the translation is given here.
[Tho translation of the Goledryáya, or Treatise on the Sphcre, lucing now out of print, the followiug account of its contents is added for the sake of eompleteness :-

Chapter I. In praise of tho advantages of the study of the sphere.
Chapter II. Questions on the geueral view of the spherc.
Chaptcr III. Cosmograplyy, (including a refutation of the supposition that the earth is level).

Chapter IV. On the principles of tho rulcs for finding tho mean plaees of the plancts.

Chapter V. Ou the principles on which tho rules for finding the true plaecs of the planets are gronnded.

Chapter VI. On the construction of an Armillary Spherec.
Chapter VII. On the principles of the rules for resolving the questious on time, spacc, and directions.

Chapter VIII. The explanation of the cause of oelipses of tho sun and moon.

Chapter IX. On the principles of the rules for finding the time of the rising and setting of the lioavenly bodies.

Chapter X. On the cause of the phases of the moon.
Chapter XI. Oņ the use of astromomical instruments, viz., (1) tho gnomon, (2) the vertical eircle, (3) the Phalaka (invented by Bháskara), (4) the Yashti, or staff, (5) the Dhi-yantyc, or genius-instrument, (6) the self-revolving instrument, (6) the syphon.

Chapter XII. The seasons.
Chapter XIII. Useful questions,-a collection of problems. Ed.].
In this work Bháskara has variously exposed the errors of Lalla, whose work he had formerly amotated.

We now proceed to mention the discoveries of Bháskara.

1. He discovered that tho earth has the inherent property of attracting all things around $\mathrm{it},{ }^{*}$ and
2. That portion of the equation of time which is due to the inclination of the ecliptic to the equinoctial. \uparrow
3. He found out the táthálika, or instantaneous motiou of the variable quantities-the planct's longitude, and the sine of the arc.

Bháskara says "the difference between the longitudes of a planct found at any time on a certain day, and at the same time ou the following day, is called its rough motion during that interval of time; and its tátkálika motion is its exact motion."

The tátkálika, or instantaneous motion of a planet, is the motion which it would have in a day, had its velocity at any given instant of time remained uniform. This is clear from the meaning of the torm tátkálika, and it is plain enough to those who are acquainted with the principles of the differential ealculus, that this tátkálika motion can be no other than the differential of the longitude of a planet. This tútcálika motion is determined by Bháskara in the following manner. \ddagger

Now, the term tatkálika applicd by Bháskara to the velocity of a planet, and his method of determining it, correspond exactly to the differential of the longitude of a planet and the way for finding it. Hence it is plain that Bláskara was fully acquainted with the principle of the differential calculus.§ The subject, however, was only inci-

* [Siddhanta-S'iromani. Chap. IIT, 6.-Ed.]
\dagger [Siddhanta-S'iromani. Chap. V, 16, 17.-Ed.]
\ddagger [The calcalations given by tho anthor are omittcd, as they havo already been published in J. A. S., B., Vol, XXVII, pp. 213 and ff.-Ed.]
§ [See, however, two papers hy Spottiswoode in tho Journal of the Royal Asiatic Society, Vol. XVII, p. 222 and Vol. XX., p. 345. Mr. Spottiswoode considered that the pandit had ovcrstated his case. He added 'Bháskara undonbtedly conceived the iden of comparing the successivo positions of a planot in its path, and of regarding its motiou as constant during the interval, and loo may be said to have had some rudimontary notion of representing the arc of a curve hy means of auxiliary straight lines. But on the othor hand, in the mothod hero given, he makes no allasion to one of the most essential features of the Differential Calcnlns, viz, tho infinitesimal magnitude of the intervals of time and space therein employed. Nor indeed is anything specifically said ahont tho fact that the method is an approximative one.
' Nevertheless, with these reservations, it must he adinitted, that tho penetration
dentally and bricfly treated of by him, and his followers, not eompreheuding it fully, have hitherto neglected it entircly.

4. The ancient astronomers Lalla and others say that the difference between the mean and true motion of a planet becomes nothing when the planet reaches the point of intersection of the concentric and excentric. But Bháskara, denying this, says that when the planet reaches the point where tue transverse diameter of the concentric cuts the exceutric, the difference of the mean and true motions becomes 0.*

For let p be the mean place of a planet at any time on a certain day, and p^{\prime} that at the same time on the acxt day; and e and $e ́$ be the amounts of the equation respeetively: then $p+e$ and $p^{\prime}+e$ will be the true places of the planet; $\therefore p^{\prime}-p+(e-e)$ will be the true motion of the planet; taking $p^{\prime}-p$ the mean motion from this, the remainder $\dot{\beta}-e$ is the difference between tho amounts of the equation. Thus, it is plain, that the difference between the mean and truc motions of the planct is the rate of the increase or decrease of the amomet of the equation. Therefore where the amount of the equation becomes greatest, the rate of its increase or decrease will be nothing; or the difference between the inean and truc motions cquals 0 . But as the amount of the equation becomes greatest, when the planet reaches the point of the excentric cut by the transverse diameter of the concentric (sce the note on verses 15,16 and 17 of Chapter V), the rate of its increase or decrease must be nothing; that is, the difference between the mean and true motions will be nothing at the same point. This is the principle of the maxima and minima, with which, it is thus evident, Bháskara was acquainted.
5. He ascertained that when the arc corresponding to a giveu sine or cosine is found from the table of sines, this will be not far from its exact value, when it is not nearly equal to 90° or 0° respectively. \dagger
6. He discovered tho method of finding the altitude of the sun, when his doclination and azimuth and the latitude of the place are given. This is a problem of Spherieal Trigonometry, which he first solved by two rules in the Ganitúdhyáya. Of thesc two rules, we have shown one in the note on versc 46 of the 13 th Chapter of the Goládhyaya, and the other is the following :-
shown by Bháskara in his analysis, is in the higbest degreo remarkable; that the formnla which he establishes, and his method of establishing it, bear more than a mero resemblaneo-they bear a strong analogy-to tho eorresponding process in modorn matbematical astronomy ; and that tho majority of scientific persons will learn with surprise tho existonce of sueh a method in tho writings of so distant a poriod, and so romoto a rogion.' Ed.]

[^1]Multiply the equinoctial shadow by the radius and divide the product by the cosine of the azimuth. Assuming the result as an eqninoctial shadow, find the sine of an assumed latitude, i. e, finding the Akshakarna from this equinoctial shadow, say :-
as the akshakianaca
: the equinoctial shadow or the result
:: the radius
: the sinc of assumed latitude.
Now the sine of the sun's declination multiplied by the sine of latitnde of the given plaec gives the sine of assumed declination.

Add the assumed declination to the assumed latitude, when the snn's doelination is south ; but when the declination is north, subtraet it. Tho result will be the zenith distance of the sun.*

Demonstration. First of all le found the shadow of the gnomon, when the sun, revolving in the equinoctial, arrived at the given vertical circle, i. $e_{\text {., }}$ when the sun has the given azimnth, as follows:-

Draw a circle on a level surface with a given radius, and dras two diamcters perpendicnlar to each othcr, east and west and unrth and sonth; then, at the equinoetial day, if we place a gnomon of 12 digits on the level so that the end of its shadow fall on the centre, the distance of the gnomon's bottom from the east and west line must be cqual to the equinoctial sladow of the given place. Now draw a linc from the centre to tho gnomon's bottom and produce it. It will meet the cireumference at the distance of the complement of the azimuth from the east or west point.

Then say-
as the cosine of the azimuth
: the radius
$:$: tho distance of the guomon's bottou from the east and west line, i. e., tho equinoctial shadow
: the gnomon's shadow.
From this shadow find its hypothenuse, then say
as the hypothenuse
: shadow
: : radins
: tho sinc of the zenith distance when the sur is in the equinoctial having the same azimuth.
Call this sine the sino of assumed latitude.
Then by similar triangles-
as the sinc of the latitude of the place in the plane of the meridian

[^2]: the sine of the assumed latitude in the plane of the vertical
:: the sine of the sun's declination in the plane of the meridian
: the sine of the assumed declination in the plane of the rertical.
This is the sine of tho are of the vertical circle intercepted between the equinoctial and the sun's place.

Add this are to the assumed latitude, or to the are of the vertical circle from the zenith to the equinoetial when the declination is south; but when it is north substract the are, the result will be the zenith distance of the sum. Hence the rulc.

Then ho says that if the complement of the sun's azimuth be less than his amplitude, when he is in the northeru hemisphere, the vertical circle will cut the dimral circlo in two points above the horizon. Hence on the same day the suu will enter the samo vertical circle"at two different times, and therefore the sun's zeuith distanee will admit of two different values. Bhéskara detcrmined these two values thus:-

Subtract the assumed latitude above found from 180°. The remainder will be the second value of the assumed latitude. Then from these two valucs of the assumed latitude find the two differeut values of the zenith distanee. The reason is very plain.
7. The aneient astronomers, Lalla, S'rípati, \&c., erroneously used tho versed sinc and radius in finding the valana or variation (of the ecliptic). Bháskara himself refuted their rules variously, and used the right sine and the cosine of decliuation in the place of the versed sino and the radius respectively (see tho last portion following the 29 th verse of the 8 th chapter of the Goludhyáya).
8. It is stated in the Síryasidurfinta and other anciont astronomical works, that the end of the gnomonical sliadow revolves in the cireumference of a circle, which Bháskara boldly refuted.

Besides the above Bháskara discovered many other matters which风re not so important as to deserve mention herc. He wrote an annotation called Vásanábháshya on his work himself, the style of which is very good and plain. Before he wrote this commentary, he composed two other works,--one a Kurana* and the other called Sarvatobhadrayantrce, to find the hour of the day. Both of these works are now cxtant. He wrote another Karana in the 69 th year of his age, which is now very common. It appears, therefore, that Bháskara lived to the age of more than 69 years. After him, no great astronomer has appeared among the Hindu's up to the present time.

[^3]
[^0]: * [Or Vijayanitu. Both have been trunslated by Colebrooke,-Ed.]

[^1]: * [Siddhanta-S'iromani. Chap. V, 39. Ed.]
 + [Siddhantr-s'iromani. Appendix. Ed.]

[^2]: * That is, assuming the given place of the observer to bo in the nerthorn homisphero.

[^3]: * A treatise on astrenomical calculation, where the epech is taken from the commencement of the work.

